139 research outputs found

    Current and Future Nanotech Applications in the Oil Industry

    Get PDF
    Problem statement: Nanotech applications in the oil industry are not completely new: nanoparticles have been successfully used in drilling muds for the past 50 years. Only recently all the other key areas of the oil industry, such as exploration, primary and assisted production, monitoring, refining and distribution, are approaching nanotechnologies as the potential Philosopher's stone for facing critical issues related to remote locations (such as ultra-deep water and artic environments), harsh conditions (high-temperature and high-pressure formations), nonconventional reservoirs (heavy oils, tight gas, tar sands). The general aim is to bridge the gap between the oil industry and nanotechnology community using various initiatives such as consortia between oil and service companies and nanotechnology excellence centres, networking communities, workshops and conferences and even dedicated research units inside some oil companies. Quite surprisingly, even if a lot of discussion is taking place, no substantial research on these topics is currently being undertaken around the world by the petroleum industry. A very different attitude is demonstrated by other industries and the advances they achieved are outstanding. Approach: This study provides an overview of the most interesting nanotechnology applications and critically highlights the potential benefits that could come from transposing the same-or adapted-solutions to the oil industry. Results/Conclusion: As extensively illustrated, some technologies which are already available off-the-shelf can offer real improvements in dealing with some specific issues of the oil industry. Other technologies can require further elaboration before direct use, but their potential is enormous

    Design of a Portable Microfluidic Platform for EGOT-Based in Liquid Biosensing

    Get PDF
    In biosensing applications, the exploitation of organic transistors gated via a liquid electrolyte has increased in the last years thanks to their enormous advantages in terms of sensitivity, low cost and power consumption. However, a practical aspect limiting the use of these devices in real applications is the contamination of the organic material, which represents an obstacle for the realization of a portable sensing platform based on electrolyte-gated organic transistors (EGOTs). In this work, a novel contamination-free microfluidic platform allowing differential measurements is presented and validated through finite element modeling simulations. The proposed design allows the exposure of the sensing electrode without contaminating the EGOT device during the whole sensing tests protocol. Furthermore, the platform is exploited to perform the detection of bovine serum albumin (BSA) as a validation test for the introduced differential protocol, demonstrating the capability to detect BSA at 1 pM concentration. The lack of contamination and the differential measurements provided in this work can be the first steps towards the realization of a reliable EGOT-based portable sensing instrument

    Lift-off assisted patterning of few layers graphene

    Get PDF
    Graphene and 2D materials have been exploited in a growing number of applications and the quality of the deposited layer has been found to be a critical issue for the functionality of the developed devices. Particularly, Chemical Vapor Deposition (CVD) of high quality graphene should be preserved without defects also in the subsequent processes of transferring and patterning. In this work, a lift-off assisted patterning process of Few Layer Graphene (FLG) has been developed to obtain a significant simplification of the whole transferring method and a conformal growth on micrometre size features. The process is based on the lift-off of the catalyst seed layer prior to the FLG deposition. Starting from a SiO2 finished Silicon substrate, a photolithographic step has been carried out to define the micro patterns, then an evaporation of Pt thin film on Al2O3 adhesion layer has been performed. Subsequently, the Pt/Al2O3 lift-off step has been attained using a dimethyl sulfoxide (DMSO) bath. The FLG was grown directly on the patterned Pt seed layer by Chemical Vapor Deposition (CVD). Raman spectroscopy was applied on the patterned area in order to investigate the quality of the obtained graphene. Following the novel lift-off assisted patterning technique a minimization of the de-wetting phenomenon for temperatures up to 1000 °C was achieved and micropatterns, down to 10 µm, were easily covered with a high quality FL

    Application of a Micro Free-Flow Electrophoresis 3D Printed Lab-on-a-Chip for Micro-Nanoparticles Analysis

    Get PDF
    The present work describes a novel microfluidic free-flow electrophoresis device developed by applying three-dimensional (3D) printing technology to rapid prototype a low-cost chip for micro- and nanoparticle collection and analysis. Accurate reproducibility of the device design and the integration of the inlet and outlet ports with the proper tube interconnection was achieved by the additive manufacturing process. Test prints were performed to compare the glossy and the matte type of surface finish. Analyzing the surface topography of the 3D printed device, we demonstrated how the best reproducibility was obtained with the glossy device showing a 5% accuracy. The performance of the device was demonstrated by a free-flow zone electrophoresis application on micro- and nanoparticles with different dimensions, charge surfaces and fluorescent dyes by applying different separation voltages up to 55 V. Dynamic light scattering (DLS) measurements and ultraviolet−visible spectroscopy (UV−Vis) analysis were performed on particles collected at the outlets. The percentage of particles observed at each outlet was determined in order to demonstrate the capability of the micro free-flow electrophoresis (μFFE) device to work properly in dependence of the applied electric field. In conclusion, we rapid prototyped a microfluidic device by 3D printing, which ensured micro- and nanoparticle deviation and concentration in a reduced operation volume and hence suitable for biomedical as well as pharmaceutical applications

    P3HT Processing Study for In-Liquid EGOFET Biosensors: Effects of the Solvent and the Surface

    Get PDF
    In-liquid biosensing is the new frontier of health and environment monitoring. A growing number of analytes and biomarkers of interest correlated to different diseases have been found, and the miniaturized devices belonging to the class of biosensors represent an accurate and cost-effective solution to obtaining their recognition. In this study, we investigate the effect of the solvent and of the substrate modification on thin films of organic semiconductor Poly(3-hexylthiophene) (P3HT) in order to improve the stability and electrical properties of an Electrolyte Gated Organic Field Effect Transistor (EGOFET) biosensor. The studied surface is the relevant interface between the P3HT and the electrolyte acting as gate dielectric for in-liquid detection of an analyte. Atomic Force Microscopy (AFM) and X-ray Photoelectron Spectroscopy (XPS) characterizations were employed to study the effect of two solvents (toluene and 1,2-dichlorobenzene) and of a commercial adhesion promoter (Ti Prime) on the morphological structure and electronic properties of P3HT film. Combining the results from these surface characterizations with electrical measurements, we investigate the changes on the EGOFET performances and stability in deionized (DI) water with an Ag/AgCl gate electrode

    A Flexible, Highly Sensitive, and Selective Chemiresistive Gas Sensor Obtained by In Situ Photopolymerization of an Acrylic Resin in the Presence of MWCNTs

    Get PDF
    A new flexible polymeric gas sensor is developed by photocrosslinking poly(ethylene glycol) diacrylate resin (PEGDA) containing multi‐walled carbon nanotubes (MWCNTs) as conductive filler. The cured material shows a percolative threshold conductivity which changes when in contact with various gas analytes with different chemical and physical properties. The different behavior of the sensors toward the different gases is explained either on the basis of chemical affinity toward the polymeric matrix or due to the interactions that can occur between the analyte and the surface of the nanotubes in the case of the aromatic gas

    A programmable culture platform for stimulation and in situ sensing of lung epithelial cells

    Get PDF
    A programmable dynamic cell culture chamber compatible with a standard multi-well plate was designed and characterized. The system is integrated with an array of OECT biosensors, in view of an in-situ monitoring of the dynamic cultures
    corecore